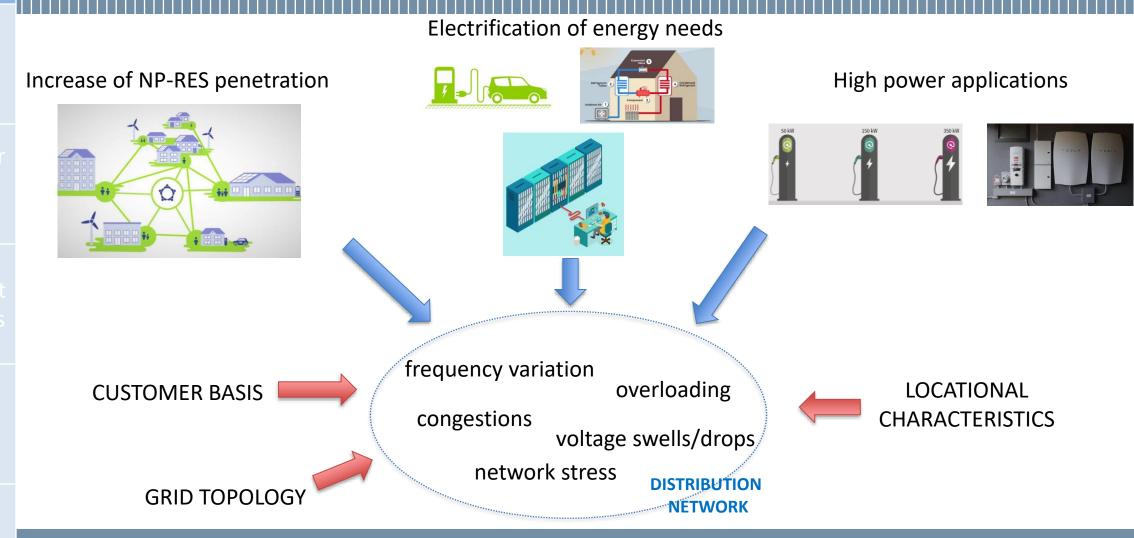


EU Regulation for Market-based Flexibility Procurement on Distribution Networks

Dr. Filippo Bovera, Dr. Giuliano Rancilio Energy Department – Politecnico di Milano


Why do we need flexibility on Distribution Networks?

EU legal basis

Solutions fo distributed flexibility

Local marker assumptions

Market models (TSO-DSO)

European legislation for local flexibility procurement

EU legal basis

Solutions fo distributed flexibility

Local market assumptions

Market models (TSO-DSO)

Guideline for product design

Article 32 of EU Directive on common rules for the internal market of electricity (2019/944)

- Published at least every 2 years
- ✓ Long and mid term needs
- ✓ 5-to-10 years investments
- ✓ Coherent scenarios development
- ✓ Stakeholder consultation

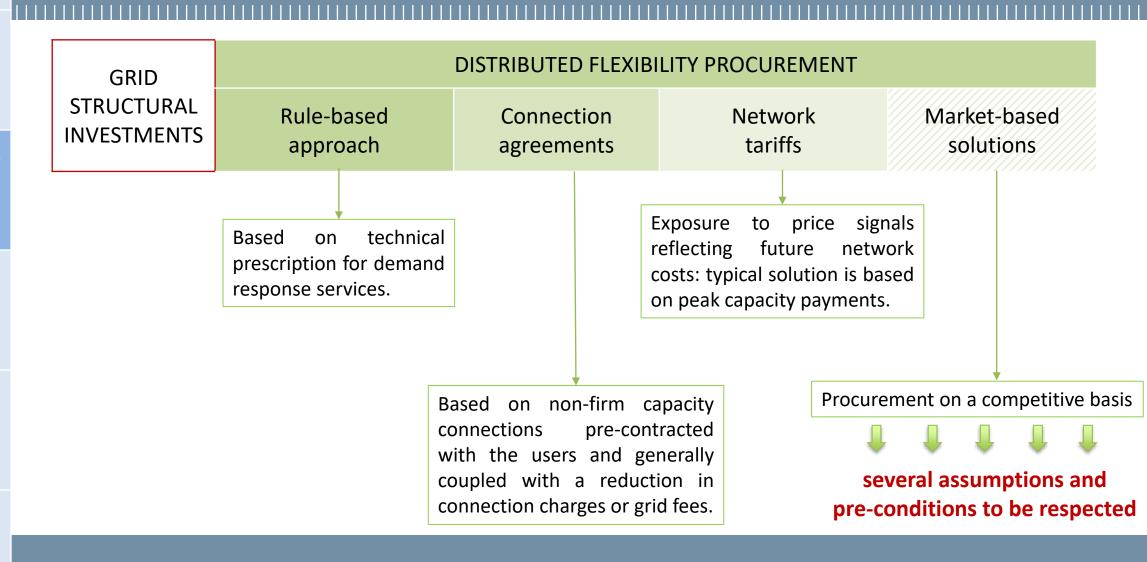
- customers should have access to electricity markets to trade demand flexibility and self-generated electricity,
- procurement procedures must be transparent, avoid discrimination and possibly market-based,
- standardised market products should be established,
 - NDPs must be used to ensure the right balance between network investments and flexibility exploitation.

EB GL (2017/2195) standardised balancing products definition

DCC (2016/1388) demand side control technical requirements

SO GL
(2017/1485)
requirements for observability
and data exchange

REMIT
(2011/1227)
dominance and low liquidity
issues in local markets


How to access distributed flexibility?

EU legal basis

Solutions for distributed flexibility

Local market assumptions

Market models (TSO-DSO)

Pre-conditions for local flexibility market-based procurement

EU legal basis

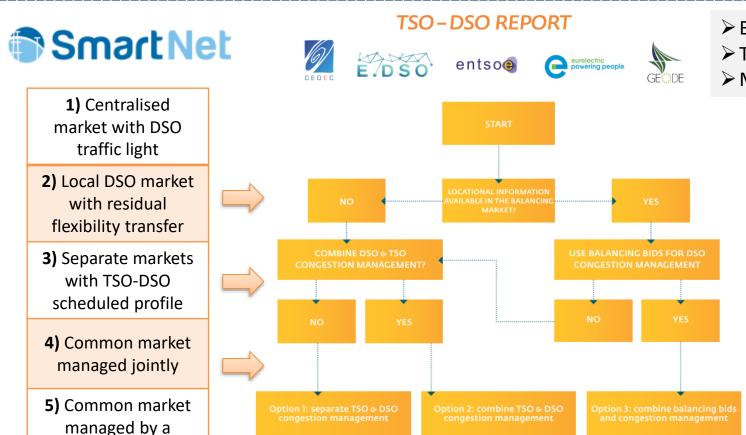
Solutions for distributed flexibility

Local market assumptions

Market models (TSO-DSO)

RI	EGULATORY ASSUMPTIONS		TECHNICAL PREREQUISITES	OPERATIONAL PRINCIPLES
as ch w • O op → in → lo	PEX vs CAPEX remuneration symmetries can push DSOs noices towards iron&copper even with more cost-effective solutions. When the cost-effective solutions where the competitive activity are and data about congestions ow market liquidity illateral contracts	•	Observability: forecasted and known state of the grid elements Controllability: correct activation of flexibility resources.	 Complex control centres with new tools: RES and load forecast, predictive and actual state estimation, sensors deployment and data availability. Common Information Model for data exchange btw relevant actors.

Markets design and coordination mechanisms


EU legal basis

Solutions for distributed flexibility

Local market assumptions

Market models (TSO-DSO)

Guideline for product design

- ➤ Bilateral contracts
- > Tendering procedures
- ➤ Market platform
- ➤ Capacity reserve
- ➤ Energy only
- ➤ Long term
- ➤ Short term
- ➤ Operational
- Specific locational and temporal needs for DSOs, together with reduced competition and market opportunities
- Reservation + activation schemes
- → flexibility resources register
- Verification of possible constraints for DN flexibility activation at higher level
- Marketplace operator independence to avoid conflict of interest and cross subsidisation
- Key role for dynamic regulation and R&D projects

third party

Product design solutions

EU legal basis

Solutions fo distributed flexibility

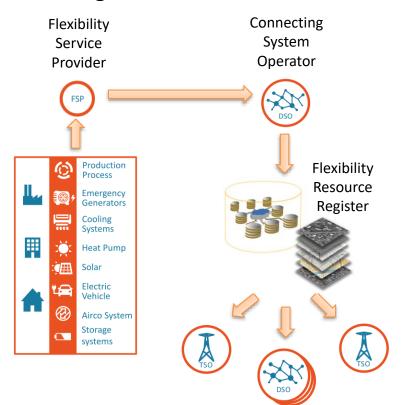
Local market assumptions

Market models (TSO-DSO)

- EB GL provides a first set of reference parameters for product design.
- In first phases it could be useful to study and exploit different characteristic of FSP, without defining a specific set of standard products (sandboxes and pilot regulation are welcome).
- Three main requirements for standard products definition at DN level:
 - o specific enough to be able to solve congestions and balancing problems,
 - o broad as possible to facilitate liquidity,
 - standardised at a national or regional level.
- Importance of **locational information** to correctly cope with DSO's needs, however avoiding too high geographic granularity because of speculation and gaming issues (Dec-Inc-Game).
- Necessity to **define a baseline** with respect to which FSPs offer their flexibility (who defines it? how?).
- Need to set up a procedure for **DSOs controlling FSPs** resources:
- → DIRECT vs INTERMIDIATE control

Product design solutions: the Flexibility Resource Register

EU legal basis


Solutions for distributed flexibility

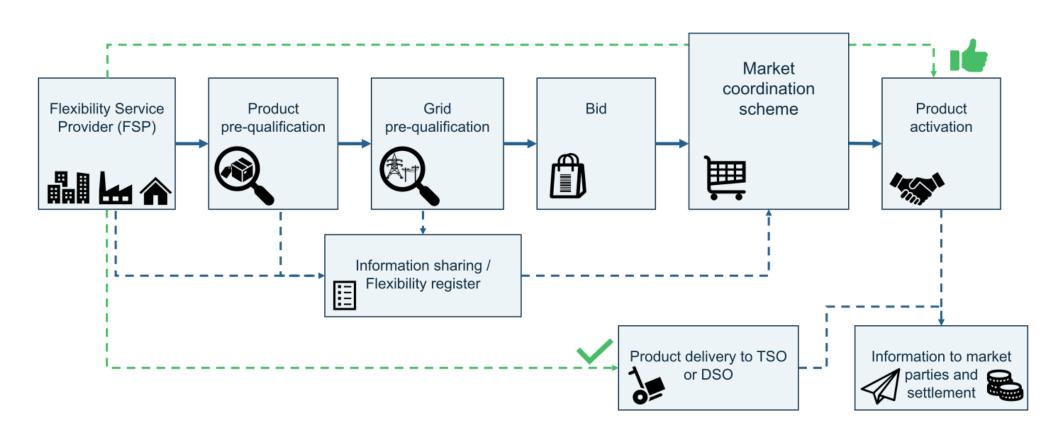
Local market assumptions

Market models (TSO-DSO)

Guideline for product design • TSO-DSO report of April 2019 opened up to the concept of flexibility resource register

TARGET: gather and share relevant information on potential sources of flexibility.

- All system operators involved know the available connected resources.
- The register should combine more data sources and information.
- Technical data include: location, capacity limits, minimum service duration, ramp rates, mode of activation, service provider, baseline.
- Should be used to evaluate FSPs market bids (monitoring and activate).
- Could be used for the settlement phase (imbalance treatment).
- Could support information exchange on aggregated bids for providers.
- Allows multiple flexibility services and revenues stacking.
- Improves competition and market liquidity.
- Increase stakeholder visibility of potential revenues for flexibility.


Procurement procedure

EU legal basis

Solutions for distributed flexibility

Local marke assumptions

Market models (TSO-DSO)

EU legal basis

Solutions for distributed flexibility

Local market assumptions

Market models (TSO-DSO)

Guideline for product design

THANK YOU!

POLITECNICO MILANO 1863